A University of Utah physicist took a step toward developing a superfast computer based on the weird reality of quantum physics by showing it is feasible to read data stored in the form of the magnetic "spins" of phosphorus atoms.
"Our work represents a breakthrough in the search for a nanoscopic mechanism that could be used for a data readout device," says Christoph Boehme, assistant professor of physics at the University of Utah. "We have demonstrated experimentally that the nuclear spin orientation of phosphorus atoms embedded in silicon can be measured by very subtle electric currents passing through the phosphorus atoms."
"We have resolved a major obstacle for building a particular kind of quantum computer, the phosphorus-and-silicon quantum computer," says Boehme. "For this concept, data readout is the biggest issue, and we have shown a new way to read data."
View: Full Article @ Technology News Daily
16 Comments - Add comment